19950626 044

OME No. ¢704-0188

REPORT DOCUMENTATION PAGE Form Approved

ns and honr's 12151
ngton, ©C 20533,

as, Qiractorate

1. AGENCY USE ONLY (Lezve blank) 2. REPCRT DATE

3. REPORT TYPE AND DATES COVERED

FINAL/30 SEP 91 TO 31 MAR 95

4. TiTLE AND SUBTITLE

DEDUCTIVE DATABASES AND KNO%EDGE BASE SYSTEMS

5. FUNDING MUMBERS

6. AUTHOR(S)

2304 /6S

AFOSR-91-0350
PROFESSOR JACK MINKER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
DEPARTMENT OF COMPUTER SCIENCE AND REPORT NUMBER
INSTITUTE OF ADVANCED COMPUTER STUDIES
UNIVERISTY OF MARYLAND

COLLEGE PARK, MARYLAND 20742 REOSRIR- 9 5- 0459

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AFOSR/NM AGENCY REPORT NUMBER
110 DUNCAN AVE, SUTE B115 , AFOSR-91-0350
BOLLING AFB DC 20332-0001 . DTIC

, E L ECTE ';\T,

1. SUPPLEMENTARY NOTES L

- " F

A, DISTRRUTION A AL IEILTY

STATIANIY i TMSTRI3OTIC N oAl
1

{

1
i
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED !

13. ABSTRACT (Maximum 200 words)

The following sections describe the research that has been accomplished during the
entire grant period form September 1, 1991 to March 31, 1995, with partial support
from the Air Force Office of Scientific Research and summarizes the papers,
prototype systems and theses produced on the grant. Several major areas will be
discussed. These are Cooperative Databases Systems, Combining Knowledge Base
Systems, Disjunctive Deduction Databases, Extensions to the Semantics of Logic
Programming and Parallel Logic Programming

During the first year of the grant we emphasized theoretical aspects of work in

deductive databases and knowledge base systems. During the second year we stressed

the development of tools and techniques to transfer the theory into practical

systems. During the third year we developed prototype systems and experiments with

them. Technological developments were made in Cooperative Database Systems and

t Disjunctive Deductive Databases. New theoretical developments were achieved in
the Semantics of Logic Programming and in Combining Databases.

14. SUBJECT TERMS 15. NUMBER OF PAGES

DTIC QUALYIY INGFIUIED 3

16. PRICE CODE

| 17. SECUR!TY CLASSIFICATION 18. SECURITY CLASSIFICATION |} 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPO

OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR(SAME AS REPORT)
o 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 739-18
298-102

FINAL PROGRESS REPORT:
RESEARCH
IN
DEDUCTIVE DATABASES and
KNOWLEDGE BASE SYSTEMS
GRANT NUMBER AFOSR 91-0350
September 1991 - March 1995

Jack Minker, Principal Investigator
Department of Computer Science and
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742

Accesion For \
NTIS CRA&I 9
]
0J

DTIC TAB
Unannounced
Justification

By
Distribution/

Availability Codes

. Avail and/or
Dist Special

]

1 Introduction

The following sections describe the research that has been accomplished during the entire
grant period from September 1, 1991 to March 31, 1995, with partial support from the Air
Force Office of Scientific Research and summarize the papers, prototype systems and theses
produced on the grant. Several major areas will be discussed. These are:

e Cooperative Database Systems.
o Combining Knowledge Base Systems.
e Disjunctive Deductive Databases.

o Exztensions to the Semantics of Logic Programming.

Parallel Logic Programming.

During the first year of the grant we emphasized theoreticél aspects of work in deductive
databases and knowledge base systems. During the second year we stressed the develop-
ment of tools and techniques to transfer the theory into practical systems. During the third
year we developed prototype systems and experimented with them. Technological devel-
opments were made in Cooperative Database Systems and Dz'sj‘unétivé Deductive Databases.
New theoretical developments were achieved in the Semantzcs of Logic Programming and in
Combining Databases.

Parallel logic programming is a topic supported by the AFOSR on a previous grant. The
work was continued with support from the National Science Foundation. We report upon
the final results of this research as it was initially supported by the AFOSR.

Work on the semantics of logic programming was supported almost entirely by the Na-
tional Science Foundation. Part of Jack Minker’s time was spent in developing a mono-
graph, Foundations of Disjunctive Logic Programming [LMR92]. The work on the
monograph is directly related to the efforts in disjunctive deductive databases. We briefly
summarize some of the results on logic programming that were partially supported by the
AFOSR.

2 Research Summary

2.1 Cooperative Database Systems.
2.1.1 Overview of Cooperative Query Answering Work

The objective of the work in cooperative answering systems is to provide answers to users
that respond correctly to a query, account for users’ needs, and inform users of reasons
underlying the response to queries. The state-of-the-art in cooperative answering has been
to develop ad hoc tools for particular databases. Our work has been oriented towards the
development of tools that are general and that can be transferred to different databases in a
straightforward manner. While the techniques are general, they use information that should
exist within any realistic relational or deductive database. The information we use from a

\
\

relational database are its integrity constraints and view definitions. In deductive databases,
rules allow new data to be derived, and we use the integrity constraints and rules already
present to provide cooperative responses.

Principles of cooperation can be applied successfully to knowledge base systems built
within the deductive database and logic programming paradigm. We have been looking at
how to better meet a user’s needs within the framework of the cooperative answering system
of Gal and Minker [GM90*]. The basic system uses semantic information in a database to
provide augmented responses to users.

In [GGM91*], we introduced a cooperative method called relazation that expands the
scope of a query by relaxing constraints implicit in the query. The method exploits the
semantic network-type information inherent in the rules of a deductive database, changing
constants to variables and changing predicate letters to generate meaningful relaxed queries
to offer to the user. An expanded version of this paper [GGM92b] was published. An
overview and description of the work in cooperative answering that has been taking place
at the University of Maryland up to 1992 is presented in [Gaa92a]. Based upon our work
in cooperative answering systems, we were invited to write a survey article on cooperative
answering systems. In [GGM92a] we present an overview of work that has been performed on
this topic up to 1992. We discuss foundational work in cooperative answering systems that
has been achieved on the topics of beliefs and expectations, presuppositions, misconceptions,
generalizations, intensional answers, and user models.

In addition to the work in completing the above papers, we have focused on transferring
the technology we have been developing on cooperative systems to full-fledged cooperative
database systems which can be interfaced with current relational database systems such
as INGRES’89 (also known as University INGRES). We developed an architecture for a
cooperative answering system [GGMN92c, GMN94] and revised our prototype system to
conform to the architecture. We also developed eflicient algorithms that are important for an
operational system. We have been engaged in developing efficient algorithms that render the
search for cooperative query answers tractable, which is necessary for a functional cooperative
database system [Godf94, Godf95]. The system was integrated with INGRES’89 and tested
on a database that conmsists of information about naval ships. Experimentation with the
database and the cooperative system indicates that the overhead in using the cooperative
shell over a relational database was not significant and that the approach was viable. Based
upon our research, we believe that it will be possible to incorporate a cooperative answering
mechanism with virtually any database management system at a small cost in overhead.

During the last few months of the grant, we obtained a copy of the ORACLE-7 database
system, a production database system (INGRES’89 is not a production database system).
We have started to integrate the Carmin cooperative engine with ORACLE-7. "Assuming
that the system works well, we plan to make it available to the AFOSR, although we will be
completing it with other funding.

. Some work was also accomplished on natural language generation of cooperative answers.
A model of natural language generation that incorporates theories of tense and aspect for the
generation of coherent text from a temporal database is presented in [DG92]. Procedures
have been devised to select tense and aspectual features that are crucial for the surface
realization of natural language utterances from the logical expressions of a temporal database.
A procedure for selecting temporal connecting words for complex matrix/adjunct sentences

\
\

that describe two conjoined database literals has also been built. The approach to selecting
tense, aspect, and connecting words is a general method to handle temporal information in
the generation of language. The current framework has been applied directly to the task of
generating cooperative answers and to the language generation task in machine translation.

A Ph.D. thesis [Gaa92b] was completed on cooperative answering. A second Ph.D. thesis
will be completed before the end of December 1995 [Godf95].

2.1.2 The Carmin Prototype

In this section we describe the Carmin prototype which can be made available for beta-
testing and outside use. Carmin is a cooperative database system. The primary cooperative
response features that the Carmin project covers are:

e recognizing misconceptions,
e recognizing minimal failing subqueries (false presuppositions), and
¢ query relaxation. =

Misconceptions arise when a query must fail with respect to the semantics (rules and
integrity constraints). of the database. Carmin generates an explanation for the user in such
cases. The misconception engine and explanation facility are implemented in the prototype.

The approach [Godf94] and code for minimal failing subqueries have been accomplished
as part of the Carmin project, but not yet integrated into the Carmin prototype. We plan
to explore adding a query relaxation mechanism to the prototype. This mode will require
more consideration and research. A previous prototype implements query relaxation, but
this is missing in the current prototype. We still need to determine a principled way to add
this to the current prototype, and how to integrate it appropriately with the other features.

The paper [GMN94] gives a good overview of Carmin’s intended cooperative response
modes and of Carmin’s architecture. This paper will also provide more details about what
these cooperative response modes are, along with examples.

Carmin’s query interface is Datalog. In the case of INGRES’89, the query is translated
internally to a set of “SQL” queries that are then sent to the associated relational database
system for evaluation. Datalog is a higher level query language than SQL, so this translation
can be involved. Carmin has a sophisticated Datalog-to-SQL translator that results in good
query evaluation performance. (Carmin is a simplistic deductive database system.) See the
paper [GMN94] again for some more details on this.

Some people may find using Datalog easier than SQL, since it is a higher level query
languages. Others may not; especially trained SQL programmers who are very used to
SQL. Carmin must use the Datalog format internally, as it must do a logical analysis of
the query. Datalog is amenable to this, but SQL is not so readily. It may be possible in
the future, though, to add an SQL front-end to Carmin that would allow it to accept and
process SQL-like queries. Whether we pursue this will depend on feedback from our various
beta-testers.

The current Carmin prototype accomplishes a limited degree of semantic query optimiza-
tion. We shall be working to add further semantic query optimization techniques to future
versions of the Carmin prototype.

A slightly older version of the Carmin prototype (with a less sophisticated explanation
facility) is available as a demonstration on World Wide Web for evaluation. The demon-
stration pages give a more detailed overview of Carmin. The demonstration is available

at:
URL = http://karna.cs.umd.edu:3264/

The Carmin system is implemented in Quintus Prolog and C. The beta-site organization
would need Quintus Prolog to run the system. Quintus is a commercial Prolog system that
must be licensed. It may be possible to convert the code to Sicstus or SWI Prolog, although
this would require nontrivial effort. We run the system on a SUN SPARCstation under SUN
OS UNIX. The system should not be operating system dependent, and ought to be easily
ported to other platforms.

- The current Carmin system is interfaced with INGRES 89, a free-ware relational database
system made available from Berkeley for educational and research purposes. Carmin can be
used with databases in INGRES’89. We plan to implement a second RDBMS interface, this
~ with ORACLE-7, the newest commercial version of the Oracle Company’s main relational
- database system. ' o

2.2 Combining Knowledge Base Systems.

When dealing with multiple knowledge base systems, the individual systems may be consis-
tent with the integrity constraints, but when combined, the new system may be inconsistent.
The problem of combining knowledge bases is studied with respect to three knowledge rep-
resentation languages: logic programs, first-order theories, and default theories. The various
properties that a combined knowledge base should satisfy are formalized as:

1. consistency,
2. maximality, and

3. correctness with respect to the union of the knowledge bases.

In order to guarantee consistency, two checks must be performed: consistency of the
union of knowledge bases (since the union of first-order theories or the union of default
theories may be inconsistent), and consistency of this union with respect to the integrity
constraints. To satisfy the maximality condition the combined knowledge base of a set of

Horn programs may have to be transformed into a disjunctive knowledge base. Methods
are presented that consider these aspects and construct the maximal consistent combined
knowledge base correct with respect to a given set of knowledge bases. Combining knowledge
bases may be compared to the problem of updating a knowledge base [BKMS91b).

Work achieved earlier on this subject was extended to consider the case of combining

databases described by first-order theories [BKMS91b, BKMS92]. A preliminary paper was =

written on combining databases in default theories [BKMS91a*] and a journal article was
written to complete this work [BKMS94].

In addition, we have addressed the problem of combining databases with priorities. One
database may have priority over another database for a particular datum or topic, while other

\
\.

4

databases may have priority for other data or topics. A paper was accepted for publication in
a journal on this subject [PMS95] in which we solve the problem for propositional databases.
A preliminary paper on combining databases in Datalog databases was presented at a con-
ference [Pra95], and an extended version of the paper has been submitted for publication in
a journal [PM95].

2.3 Disjunctive Deductive Databases.
2.3.1 Overview of Deductive Database Research

Disjunctive deductive databases (DDDBs) are concerned with real world situations that are
both definite and indefinite. This contrasts with work in relational databases (RDBs) and
deductive databases (DDBs) where all information is definite. In RDBs and DDBs a fact is
either known or derivable and hence true, or false otherwise. Such databases have no formal
mechanism to provide the user with information that is indefinite. Thus, it is not possible

to store information of the type, “Smirnov is General of the 5th Russian Air Wing or of the

~7th Russian Air Wing.”

The state-of-the-art in DDDBs before the current grant is described in [FM92b]. During

the first year of the grant we extended the theory so that there is now a clear semantics for
DDDBs that includes stratified and normal DDDBs. The latter two theories permit negation
in the body of rules. The normal theory applies to stable model semantics. In addition to a
clear semantics, we have developed algorithms to store and retrieve data in these databases.
The algorithms are based on the model tree data structure developed under the grant. A
model tree data structure represents completely the minimal models of a DDDB.

Two major topics are discussed in this area: bottom-up methods to evaluate disjunctive
deductive databases and the view update problem in disjunctive deductive databases.

Bottom-Up Evaluation of Disjunctive Databases. Given a hierarchical, range restricted
disjunctive deductive database, an algorithm was developed to compute answers efficiently
to queries [FM91a*]. The computation method is based on the development of a model
tree which shares minimal models of a disjunctive database. An incremental algorithm is
presented which computes the model tree of a hierarchic disjunctive deductive database in
one pass through the rules of the database.

During the current grant, we developed a new fixpoint characterization of the minimal
models of disjunctive logic programs [FM91]. We proved that applying the operator iter-
atively characterizes the perfect models semantics of disjunctive stratified logic programs.
Given the equivalence between the perfect models semantics of stratified programs and pri-
oritized circumscription, our fixpoint characterization captures the meaning of the corre-
sponding circumscribed theory. Based on these results, we present a bottom-up evaluation
algorithm for disjunctive stratified databases. This algorithm uses the model-tree data struc-
ture to represent the information contained in the database and to carry on the computation
of queries.

We also show [FLMS93] that stable models of logic programs may be viewed as minimal
models of programs that satisfy certain additional constraints. To do so, we transform
the normal programs into disjunctive logic programs and sets of integrity constraints. We
show that the stable models of the normal program coincide with the minimal models of the
disjunctive program that satisfy the integrity constraints. As a consequence, the stable model

\
\.

semantics can be characterized using the Fztended Generalized Closed World Assumption for
disjunctive logic programs.

We also note that for disjunctive logic programs the two definitions of integrity constraint
satisfaction: entailment and consistency differ since disjunctive programs have more than one
minimal model.

Using this result, we develop a bottom-up algorithm for function-free logic programs to
find all stable models of a normal program by computing the minimal models of a disjunc-
tive logic program and checking them for consistency with the integrity constraints. This
algorithm uses the model-tree abstract data structure developed by Fernandez and Minker to
compute the minimal models of disjunctive deductive databases. We complement Fernandez
and Minker’s original algorithms by adding a new step where models inconsistent with the
integrity constraints are ruled out.

The integrity constraints provide a rationale as to why some normal logic programs have
no stable models. Using the minimal models of the program and the set of integrity con-
straints that are inconsistent with those models, it is possible to determine why a normal
program has no stable models. As a result of this work, a journal article appeared on
computing stable model semantics [FLMS93]. In addition, two invited conference papers
[FM92a, FM92b] were presented. One invited journal article [FM93] was written on the the-
oretical aspects of disjunctive deductive databases. We present the model, fixpoint and proof
semantics for a large class of disjunctive deductive databases. Algorithms are presented in all
cases. A Ph.D. thesis was written by Ferndndez that provides the theory and algorithms for
disjunctive deductive database [Fern93]. In addition, since disjunctive deductive databases
are, in general, intractable, we have devised an algorithm to handle a tractable subclass of
these databases in which every clause in the theory has at most two literals [FKM92].

We have also developed model, proof and fixpoint semantics for extended disjunctive
deductive databases [MR93] which combines default negation and classical negation. An
invited journal paper was written on this subject [MR94]. Several papers were written on
representing, evaluating, and computing in disjunctive databases [FMY95, YFM94, YM93,
YMO95). '

View Update in Disjunctive Databases. The view update problem is the following: given
disjunctive facts and rules such that the predicates in the disjunctive facts are distinct from
predicates in the heads of rules, how does one enter or delete a predicate or a disjunction
of predicates that appears in a rule. The problem is complex as one cannot simply add the
predicate that appears in the head of a rule to be a fact; it cannot appear as a fact since the
predicates of facts must be distinct from the predicates that appear in the heads of rules.
This condition applies not only to deductive databases, but to relational databases as well.
In a relational database, if a relation is defined as a view, then it cannot be defined as a
relational table at the same time.

Grant, Horty, Lobo and Minker [GHLM92, GHLM93] develop algorithms to insert and
delete views in disjunctive deductive databases. They show that there are many ways in
which one can enter or delete a predicate defined as a view in a disjunctive deductive database
and show that the method they develop is the best with respect to certain criteria. Fernindez,
Grant and Minker [FGM94] develop a model theoretic approach to the view update problem
that generalizes the approach in [GHLM93]. Gryz, Grant and Minker [GGM95] show how,
using model trees, to update ground disjunctive databases without deductive rules.

Query
Pre-Processor

Deductive Engine <—-——> Disjunctive Engine

Relational
Database

Model trees

Figure 1: Functional units in DDDBS

In addition to the above work, Grant and Minker [GM92b] wrote an invited paper in
which they describe the impact of logic programming on databases. Grant and Minker
[GM92a, Min92] wrote articles on deductive databases that were published in encyclopedias.

2.3.2 Disjunctive Deductive Database Prototype

Disjunctive theories are important when data are unknown or uncertain, as is often the case
in military intelligence applications. Based upon our theoretical work on disjunctive theories,
we have developed an architecture for a disjunctive deductive database system [Fern93] which
is shown in Figure 1. We developed a prototype system to experiment with disjunctive
deductive databases. An on-line demonstration of this implementation is accessible through

WWW at ‘
URL = http://karna.cs.umd.edu:3264/ -

In what follows, we describe each component of the architecture shown in Figure 1.

Relational Database. This part of the prototype consists of all the relational tables containing
definite facts.

\
\.

Model trees. The semantics of a sét of disjunctive facts in the database is represented by the
set of its minimal models. A disjunction of the form a V b forces every minimal model to
contain either a or b.

Dealing with indefinite data is, in general, computationally intractable. The source of
intractability of a DDDB lies in the necessity of representing and then working with all
(minimal) models of the database. One efficient way to implement minimal models is to
use a structure called model tree developed by Fernandez and Minker in [FM91a*, Fern93].
A model tree allows structure sharing so that the same atom need not be listed separately
for each model. Nodes in such a tree structure represent the ground atoms of the database.
Each branch (a path from the root to a leaf node) represents a model.

This representation can be improved further by defining the concept of a model for-
est [Fern93]. A model forest is a clustered representation of a model tree. Instead of repre-
senting all minimal models of the database in a single tree, it is split into smaller trees that
do not share atoms. With the model forest representation, any query containing predicates
from a single tree, needs to be evaluated in that tree only.

This clustered representation of the database may reduce dramatically the space needed
for storing the database as well as the time needed for query processing. For example, in
the extreme case where a database contains n independent disjunctions each containing 2
disjuncts, it can be represented as n 3-node (2 nodes for the disjuncts plus one node for a
root) trees. On the other hand, if one were to represent the same database in one tree, it
would have O(2") nodes!

Query Pre—processor, Deductive Engine, and Disjunctive Engine. All predicates in the
DDDB are partitioned into two classes: eztensional and intensional. The former are used to
represent facts (definite or indefinite) and corresponds to facts and the latter represent in-
formation that can be inferred using the deductive capability of the DDDB (i.e., information
that occur in heads of rules). Another partition (orthogonal to the first) is between definite
and indefinite predicates. A predicate p is indefinite if and only if

e p occurs in a disjunctive fact, or

.

e p occurs in the head of a disjunctive rule, or
e p occurs in the head of any rule whose body contains an indefinite predicate.

The fact that a predicate is indefinite does not imply that all its instances represent
indefinite information. For example, if teach(jarek, philosophy) OR teach(jarek,ai) is a
disjunctive fact in our database, teach is an indefinite predicate. There could be, however,
other facts with this predicate, e.g., teach(michael,az), which are definite. Definite facts
are stored explicitly in the relational database and indefinite facts (disjunctions) are stored
implicitly as model trees. .

An answer to a query « Q(X) is a substitution 8 for the variables X appearing in @
in such a way that Q@ is true in the database. Given a query, our prototype retrieves all
possible such substitutions or answers. In what follows, we sometimes call these substitutions
“bindings”.

Each query sent to our database is processed in the following way.

1. The query pre—processor flattens the query; i.e., finds all alternative conjunctions of
ertensional atoms that are equivalent to the original query. Without disjunctive rules,
flattenings can be produced efficiently by top-down PROLOG evaluation.

2. Next, each of the flattened queries (which at this point contains only extensional pred-
icates) @;,1 < ¢ < k, where k is the number of flattenings) is separated into two parts:
a definite and an indefinite part. Thus, each of Q;’s has the form « pi,...,p., 4}, ..., 4%,
where the p’’s are definite and the ¢”’s are indefinite predicates (for simplicity we do
not indicate the arguments of the predicates).

3. Depending on the values of n and m, the query is sent to the deductive engine, to the
disjunctive engine or to both.

o If n >0, m =0, i.e, a query contains only definite predicates:

The query is sent to the deductive engine and then translated into SQL and sent
to the relational database for processing.

o If n =0, m >0, i.e., a query contains only indefinite predicates:
The query is sent to the disjunctive engine for processing. The disjunctive engine
retrieves answers from the model trees.
The way the disjunctive engine processes the query is by checking, for every model
of a respective tree, whether there is a binding for which the query is true in that
model, and then building a disjunction of all such bindings.
Clearly, the tree lookup should not be executed by brute force. Each tree should
be accompanied by an indexing scheme which would support fast search for all
atoms in a given model, as well as for all models which contain a given atom.

o If n,m > 0, i.e., a mixed query:
If the definite and the indefinite part do not share variables, each part can be pro-
cessed independently (in the same fashion as described above) and the retrieved
partial answers are concatenated into a (complete) answer. If, however, the two
parts of the query share variables, they have to be processed serially. The definite
part of the query, i.e., « pi,...,pl, is sent to a relational database and the appro-
priate answers are retrieved. These answers represent alternative substitutions
that need to be made (by the disjunctive engine) to the variables in the indefi-
nite part of the query. Both the answers retrieved from the relational database
and from the indefinite part of the query are sent to the disjunctive engine for
processing.

Complezrity Considerations. Although dealing with indefinite data is, in general, compu-
tationally intractable, by clustering the indefinite data, it is possible to answer queries to
indefinite data in times that are comparable to searching over relational databases. This
happens when the clusters are reasonably small. In Figure 2, we show the limit of the size
of clusters of the database that permits reasonable efficiency of query processing. By “rea-
sonable,” we mean that a DDDB should spend no more time processing the indefinite part
of the query as it does processing the definite part. Figure 2 shows points at which the two
parts of the equation are equal, i.e., when the complexity of finding all answers to the definite

9

Complexity :
10 Jeecaraorscvanssasessoscacesnssneasccsesccctasassscsssastunasesassacns ".L'.: T=100 '000

B=100

1
10

Figure 2: A comparison of complexity: definite vs. indefinite part of the query

part is equal to that of the indefinite part. The complexity of finding all answers to a mixed
query, which consists of a conjunction of definite and indefinite atoms is given below.

Let the query be: « py,...,p1,¢1, ..., gm, Where the p’s are definite and the ¢’s are indefinite
predicates. We use the following notation: g

o T = Average number of tuples in table
¢ D = Average number of disjunctions per cluster

¢ B = Average number of bindings passed from the definite to the indefinite part of the
query
e 5 = Average number of atoms in disjunctions

If the p’s and ¢’s share variables the complexity of finding all answers to the query can
be estimated as: '

Complezity = BxS™P 4+ T!

Figure 2 shows that if the number of disjunctions per cluster is, say 6, and the average
number of bindings passed from the definite part of the query to the indefinite part is 100,

\

10

and the average number of tuples in a relational table is 1,000, then the complexity of finding
all answers to a query « py, p2, q1, g2 is the same for retrieving data from the relational tables
and the disjunctive data. Hence, in this case the search for answers is no more complex for
the disjunctive part as for the relational part of the query.

2.4 Extensions to the Semantics of Logic Programs.

A research monograph, Foundations of Disjunctive Logic Programmingby J. Lobo, J. Minker
and A. Rajasekar [LMR92], was completed. The monograph has been used as a course for
graduate students in computer science. Each chapter motivates the material in it and illus-
trates definitions, theorems and algorithms with examples. Each chapter, with the exception
of Chapter 1, contains a variety of exercises enabling the student to test whether or not the
material is understood. Hints are provided on most exercises. In addition, each chapter
contains background material and historical references. \
The book contains 10 chapters, whose titles are:

Chapter 1: Introduction and Background
Chapter 2: Definitions and Terminology
Chapter 3: Declarative Semantics

Chapter 4: Proof Theory

Chapter 5: Negation

Chapter 6: Weak Negation

Chapter 7: Normal Logic Programs
Chapter 8: Proof Theory: Normal Programs
Chapter 9: Disjunctive Deductive Databases

Chapter 10: Applications

In addition to the book, a new semantics was developed for normal disjunctive logic
programs [BLM91], termed W F3. The semantics extends the Generalized Disjunctive Well
Founded Semantics (GDW F'S), reported upon in the 1991 progress report [BLM92]. Model,
proof and fixpoint semantics have been developed for the W F3.

In [LMR91*], alternative theories developed for logic programs and disjunctive logic
programs are described. In an invited lecture, [Min94], an overview is given of work in
disjunctive logic programming. In an invited paper in honor of Alan Robinson [MLRY1], the
major results obtained in disjunctive databases are enumerated.

We have developed fixpoint, model, and proof semantics for a wide class of extended logic
programs and disjunctive logic programs [MR93]. An extended disjunctive logic program has
two kinds of negation: classical and negation-by-default. Literals may appear in the head of
a clause, while literals and negated-by-default literals may appear in the body of a clause.
An invited journal article [MR94] has been written on this subject. The work was supported
primarily by the NSF.

\
\

11

2.5 Parallel Logic Programming.

Work on parallel logic programming was not one of the topics of research on the current
grant. However, work on parallel logic programming was initiated based on earlier grants
by the AFOSR. The work described below was supported by the earlier grants and a grant
from the NSF. It is reported upon here as it is a consequence of support from the AFOSR.

A logic programming system augmented with constraint processing, data storage, and
data manipulation capabilities forms the basis for a knowledge base system. Both a run-time
and a compile-time approach to using integrity constraints in logic programming systems to
identify and eliminate unproductive search activity have been implemented within an existing
parallel logic programming system, PRISM. The extended system provides the basis for a
series of experiments which demonstrate that significant classes of knowledge representation
domains can use integrity constraints effectively. In [GGL*93] we show that using constraints
to process a query can reduce search space and response time. Furthermore, we show that in
certain cases the compile-time approach reduces response time much more than the run-time
approach.

In [Lin92], a new scheduling scheme is proposed which directs processors to share the
search space according to universal task distribution rules obeyed by all processors involved.
Load balancing is achieved by altering the shape of a search tree to remove the so-called
structural imbalance, and following a statistically even distribution rule. A condition for
task distribution is derived which minimizes the average parallel runtime. We present data
showing the effectiveness of the proposed scheme. Simulation results from benchmark pro-
grams that can be found in the literature demonstrate that the method is able to treat
programs efficiently that render mostly fine-grained parallel tasks under a typical existing
scheduler. The peak speed-up factors with the proposed technique exceed by a substantial
margin that achieved by Aurora Parallel Prolog on the same set of benchmarks.

Dynamic load balancing is the key to achieving high performance as well as maximum
utilization of processors in the parallel execution of logic programs, in which parallelism is
defined implicitly. Lin, in his thesis [Lin92b], investigates issues pertinent to scheduling and
load balancing in the parallel execution of logic programs in a distributed memory system.
A paper on this subject has appeared in the proceedings of a conference [Lin92a]. Several
task scheduling strategies are proposed and their performance evaluated through analytical
and experimental (simulation and emulation) studies. It is shown that there exists a balance
between task scheduling overhead and balancing load distribution. The goal for a scheduler
is to reach the balance so as to maximize the utilization of a parallel computer system. This
objective is approached from two directions:

e minimizing scheduling overhead under the proposition of balancing load distribution;

e balancing load distribution under the proposition of no communication overhead.

The thesis demonstrates that a combined method yields substantial improvement over
what has been achieved by existing techniques. Results from the thesis provide a deeper
insight into the role task scheduling plays in the execution of parallel logic programs. Evi-
dence obtained shows that a large scale multiprocessor can be used efficiently by a parallel
logic programming system given an efficient task scheduling mechanism. The method was
implemented on a SUN SPARCstation. Results for 30 problems are discussed and contrasted
with those obtained in the literature.

12

3 Summary of Publications

The following is a list of journal, book chapters, conference papers, and technical reports
‘published during the current grant with partial support from the AFOSR. A summary of
the number of papers written or presented is as follows:

e Research Monograph: 1

o Journal articles: 11

e Invited Journal article: 5

e Book chapters: 1

e Conference proceedings (refereed)‘: 8
e Conference proceedings (invited): 3-”7
¢ Encyclopedia articles: 2

o Technical reports (not published): 5
e Workshop Presentations: 3 '

e Ph.D. theses: 3

o Ph.D. theses (in progress): 1

Papers referenced with an asterisk (*) were published prior to the award of the grant and
are not included in the above count.

4 Graduate Students Supported
The following graduate students have been supported under the grant:

e José Alberto Fernandez
o Terry Gaasterland

e Parke Godfrey

o John Guthrie

e Jarek Gryz

o Zahid Khandaker

¢ YuanLiu

o Shekar Pradhan

e Carolina Ruiz

13

References

[BKMS91a*] C. Baral, S. Kraus, J. Minker, and V.S. Subrahmanian. “Default Logics Com-

bining and Updating Default Theories: Preliminary Report,” Bar-Ilan Sym-
posium on the Foundations of Artificial Intelligence (BISFAI-91), Ramat Gan,
Israel, June 16-19, 1991.

[BKMS91b] C. Baral, S. Kraus, J. Minker, and V.S. Subrahmanian. “Combining Knowledge

[BKMS92]

[BKMS94]

[BLM91]

[BLM92]
[DG92]

[Fern93]

[FGM94]

[FKM92]

[FLMS93]

Bases Consisting of First Order Theories,” 6th International Symposium on
Methodologies for Intelligent Systems (ISMI1S’91), Lecture Notes in Artificial
Intelligence (542), Z.W. Ras and M. Zemankova (Eds.), Charlotte, NC, 92-101,
Oct. 1991.

C. Baral, S. Kraus, J. Minker, and V.S. Subrahmanian. “Combining Knowledge
Bases Consisting of First Order Theories,” Computational Intelligence, Vol. 8,
No. 1, 45-71, 1992.

C.-Baral, S. Kraus, J. Minker, and V.S. Subrahmanian. Combining default logic
databases. Joumal of International Information Systems, 1994. To appear.

C. Baral, J. Lobo, and J. Minker. WF3: A semantics for negation in normal
disjunctive logic programs. In 6th International Symposium on Methodologies
for Intelligent Systems (ISMI1S°91), Lecture Notes in Artificial Intelligence (542),
pages 459-468, Charlotte, NC, October 1991.

C. Baral, J. Lobo, and J. Minker. Generalized disjunctive well-founded semantics
for logic programs. Annals ofMathematzcs and Artzﬁczal Intelligence, 5(2-4):89-
131, May 1992.

B. J. Dorr and T. Gaasterland. “Using a Temporal Database as the Basis for
Natural Language Generation and Translation,” Advanced Information Process-
ing and Analysis Symposium, March, 1992. :

J.A. Ferndndez. Disjunctive Deductive Databases. Ph.D. thesis, University of
Maryland, CS-TR-3208, UMIACS-TR-94-6.

José Alberto Fernindez, John Grant, and Jack Minker. Model theoretic ap-
proach to view updates in deductive databases. Technical Report CS-TR~3335,
Department of Computer Science, University of Maryland, College Park, MD
20742, 1994.

J.A. Ferndndez, Z.A. Khandakar, and J. Minker. A tractable class of disjunc-
tive deductive databases. In Proc. Workshop on Deductive Databases, Joint

International Conference and Symposium on Logic Programming (JICSLP’92),
Washington, D.C., Nov. 1992.

J.A. Fernandez, J. Lobo, J. Minker, and V.S. Subrahmanian. Disjunctive LP
+ integrity constraints = stable model semantics. Annals of Mathematzcs and
Artificial Intelligence, 8(3-4):449-474, 1993.

\

14

[FMO1]

[FM92a]

[FM92b]

[FMY3]

[FM91a¥*]

[FMY95]

[GM90*]

[GHLM92)

[Gaa92a)
[Gaa92b]

[GGL*93]

[GGM91%]

[GGM92a]

J.A. Fernéndez and J. Minker. Computing perfect models of disjunctive stratified
databases. In ILPS’91 Workshop on Disjunctive Logic Programming, November
1991.

J.A. Fernandez and J. Minker. Disjunctive deductive database. In 9rd Inter-
national Conference on Logic Programming and Automated Reasoning, pages
332-356, July 1992. Invited Paper.

J.A. Fernandez and J. Minker “Semantics of Disjunctive Deductive Databases”,
4th International Conference on Database Theory, Berlin, Germany, Oct. 1992,
21-50. (Invited Paper).

J.A. Fernandez and J. Minker. Theory and algorithms for disjunctive deduc-
tive databases. Programmirovanie, N 3:5-39, 1993. (also appears as University
of Maryland Technical Report,CS-TR-3223, UMIACS-TR-94-17,1994. Invited

Paper in Russian).

J.A. Fernandez and J. Minker. “Bottom-up Evaluation in Disjunctive Deductive
Databases,” Proceedings of the International Conference on Logic Programmmg,
Paris, June 91.

J.A. Fernindez, J. Minker, and A. Yahya. Computing perfect and stable models
using ordered model trees. Journal of Computational Intelligence, Vol. 11, No.1,
89-112, 1995.

A. Gal and J. Minker. “Producing Cooperative Answers in Deductive
Databases,” In Patrick St. Dizier and S. Szpakowicz, editors, Logic and Logic
Grammer for Language Processing, pages 223-254. Ellis Horwood Ltd., 1990.

J. Grant, J. Horty, J. Lobo, and J. Minker. “Updates in Disjunctive Deduc- -
tive Databases,” Second International Workshop in Artificial Intelligence and
Mathematics, Fort Lauderdale, CA., January 1992.

T. Gaasterland. Cooperative explanation in deductive databases. In AAAI
Spring Symposium on Cooperative Ezplanation, pages 25-27, March 1992.

T. Gaasterland. Generating Cooperative Answers in Deductive Databases. PhD
thesis, University of Maryland, College Park, MD 20742, 1992.

T. Gaasterland, M. Giuliano, A. Litcher, Y. Liu, and J. Minker. Using integrity
constraints to control search in knowledge base systems. International Journal
of Ezpert Systems, 6(4):447-487, 1993.

T. Gaasterland, P. Godfrey, and J. Minker. Relaxation as a platform for co-
operative answering. In International Workshop on Non-Standard Answers and
Non-standard Queries, pages 1-3, Toulouse, France, July 1991.

T. Gaasterland, P. Godfrey, and J. Minker. An overview of cooperative answer-
ing. Journal of Intelligent Information Systems, 1(2):123-157, 1992. (invited

paper).

15

[GGM92b] T. Gaasterland, P. Godfrey, and J. Minker. Relaxation as a platform for coop-
erative answering. Journal of Intelligent Information Systems, 1(3/4):193-321,
1992.

[GGMN92c] T. Gaasterland, P. Godfrey, J. Minker, and L. Novik. A cooperative answering
system. In Andrei Voronkov, editor, Proceedings of the Logic Programming and
Automated Reasoning Conference, Lecture Notes in Artificial Intelligence 624,
pages 478-480. Springer-Verlag, St. Petersburg, Russia, July 1992.

[GMN94] P. Godfrey, J. Minker, and L. Novik. An architecture for a cooperative database
system. In Witold Litwin and Tore Risch, editors, Proceedings of the First Inter-
national Conference on Applications of Databases, Lecture Notes in Computer
Science 819, pages 3-24. Springer Verlag, Vadstena, Sweden, June 1994. (Invited
Paper.)

[Godf95] P. Godfrey An Architecture and Implementation for a Cooperative Database
: System PhD thesis, University of Maryland, College Park, MD 20742, 1995 (In
Progress). S RTr T

[Godf94] P. Godfrey Minimization in Cooperative Response to Failing Database Queries b’
University of Maryland Technical Report CS-TR-3348 and UMIACS-TR-94-108,
1994.

[GHLM93] J. Grant, J. Horty, J. Lobo, and J. Minker. View updates in stratified disjunctive
databases. Journal Automated Reasoning, 11:249-267, March 1993.

[GM92a] J. Grant and J. Minker. Deductive database systems. In Encyclopedia of Arti-
fictal Intelligence, pages 320-329. 1992.

[GGM95] J. Grant, J. Gryz, and J. Minker Updating disjunctive databases via model
trees. University of Maryland Technical Report, CS-TR-3407, UMIACS-TR-95-
11. February 1995.

)

[GM92b] J. Grant and J. Minker. The impact of logic programming on databases. Com-
munications of the ACM, 35(3):66-81, March 1992. (Invited Paper.)

[Lin92] Z. Lin. Self-organizing task scheduling for parallel execution of logic programs.
In Proceeding of the 1992 Conference on Fifth Generation Computer Systems,
Japan, 1992.

[Lin92a] - Z. Lin. A Distributed Load Balancing Scheme for Parallel Logic Programming
21st International Conference on Parallel Processing.

[Lin92b] Z. Lin. “Task Scheduling for Parallel Execution of Logic Programs”. Ph.D.
Thesis, Department of Computer Science, University of Maryland, May 1992.

[LMRI1*] J. Lobo, J. Minker, and A. Rajasekar. On general disjunctive logxc programs.
In Intelligent Systems, pages 170~ 199 1991.

16

[LMR92]

[Min94]

[Min92]

[MLRY1]

[MR93]

[MR94]

[Pra93]

[PM93]

[PMS95]

[YFMO94]

[YM93)]

[YM95]

J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Pro-
gramming. MIT Press, 1992.

J. Minker. An overview of disjunctive logic programming. Annals of Mathemat-
ics and Artificial Intelligence. Vol. 12 (1994), Nos. 1,2, 1-24, December, 1994.
(Invited Paper.)

J. Minker “Deductive Database” Encyclopedia of Computer Science, A. Ralston,
Editor, 320-328, 1992.

J. Minker, J. Lobo, and A. Rajasekar. Theory of disjunctive logic programming.
In J.-L. Lassez, editor, Computational Logic: Essays in honor of Alan Robinson,
pages 613-639. MIT Press, 1991.

J. Minker and C. Ruiz. On extended disjunctive logic programs. In J. Ko-
morowski and Z.W. Ras, editors, Proceedings of 7th Intl. Symposium - ISMIS’93,
pages 1-18, Trondheim, Norway, June 1993. Springer-Verlag. (Invited Paper.)

J. Minker and C. Ruiz. Semantics for disjunctive logic programs with exphcxyt and
default negation. Fundamenta Informaticae, 20(3/4):145-192, 1994. Anniversary
Issue edited by H. Rasiowa. (Invited Paper.)

S. Pradhan. Combining datalog databases using priorities. In Advances in Data
Management ’94, pages 355-375. Tata-McGraw Hill, India, 1995.

S. Pradhan and J. Minker. Combining datalog database with priorities. Tech-
nical Report, University of Maryland, CS-TR-3470, UMIACS-TR95-58, May
1995.

S. Pradhan, J. Minker, and V.S. Subrahmanian. Combining databases with
prioritized information. Journal of Intelligent Information Systems, 4(3):231-
260, May 1995.

A. Yahya, J.A. Fernindez, and J. Minker. Ordered model trees: A normal form
for disjunctive deductive databases. Journal of Automated Reasoning, 13(1):117-
143, August 1994.

A. Yahya and J. Minker. Representations for disjunctive deductive database.
Technical Report CS-TR-3111, UMIACS-TR-93-70, University of Maryland,
1993.

A. Yahya and J. Minker. Query evaluation in partitioned disjunctive deductive
databases. International Journal of Intelligent and Cooperatzve Information Sys-
tems, 1995. To appear.

17

